skip to main content
Caltech

Analysis Seminar

Wednesday, May 28, 2025
3:00pm to 4:00pm
Add to Cal
Linde Hall 187
Well-posedness for the Schrodinger maps equation with initial data small in a Besov space
Benjamin Dodson, Department of Mathematics, Johns Hopkins University,

In this talk we prove a scattering result for Schrodinger maps with initial data small in a Besov space. This is a generalization of well-posedness results of Zi Le and and BIKT (Bejenaru, Ionescu, Kenig, Tataru) that prove global well-posedness for small energy solutions to the Schrodinger map. Here we prove the result for initial data that may have large energy, but with small energy at each Littlewood—Paley projection. This is joint work with Jeremy Marzuola.

For more information, please contact Math Department by phone at 626-395-4335 or by email at [email protected].