LA Probability Forum
UCLA, Math Sciences Room 6627
We consider a random graph in which vertices can have one of two possible colours. Each vertex switches its colour at a rate that is proportional to the number of vertices of the other colour to which it is connected by an edge. Each edge turns on or off according to a rate that depends on whether the vertices at its two endpoints have the same colour or not. The resulting double dynamics is an example of co-evolution.
We prove that, in the limit as the graph size tends to infinity and the graph becomes dense, the graph process converges, in a suitable path topology, to a limiting Markov process that lives on a certain subset of the space of coloured graphons. In the limit, the density of each vertex colour evolves according to a Fisher-Wright diffusion driven by the density of the edges, while the underlying edge connectivity structure evolves according to a stochastic flow whose drift depends on the densities of the two vertex colours.
Joint work with Siva Athreya (ICTS Bangalore) and Adrian Rollin (NU Singapore).